
c 
- k... 

SEMI-ANNUAL REPORT 

GRANT NAG8-032 

June 1985 - May 1987 (J 

Study of the Production of Some Superconducting and Magnetic 
Matreials by Solidification in the Drop Tube and Drop Tower 

M. K. Wu 

Prepared for 

National Aeronautics and Space Administration 
George C. Marshall Space Flight Center 

Marshall Space Flight Center, Alabama 35812 

Submitted by 

The University of Alabama in Huntsville 
School of Science 

Huntsville, Alabama 35899 

- 
January, 1987 

(PASA-CB-182U94) STOCY OF % B E  DBODDC1PIOIO OP U88-187C8 
SCLIE SUPERCOYDUCTIEC A H D  l A 6 1 1 E O f C  BATEBIALZS 
EX SOIJDIEXEA!IIGI II X B E  DRGE %EEZ AlYD DOOP 
2CUEB Semiannual  fieport, 30s. 19E5 - flay Unclas 
1487 (Alabama Dndv. )  30 E CSCL 11C 63/27 0124720 

4 

* I  



ACKNOWLEDGMENTS 

We like to acknowledge Drs. R. J. Naumann and P. A. Curreri for their 

encouragement and support for this work. We also like to thank Dr. W. P. 

Kaukler for his invaluable contribution to the microstruture study of the 

materials, J. Coston for the WDX and SEM work, G .  Workman, G .  Smith, S. 

Straits and D. Kaukler for their careful preparation of the samples. 



1 t 

~ PURPOSE AND BACKGROUND: 

The purpose of this study is to carry out a systematic study 

on the relationship between the microstructure and physical 

properties of several superconducting materials prepared by 

solidification in low gravity. Further study of the materials, 

such as the application of hydrostatic pressure which is known to 

be an effective mean to vary the electronic structure of 

materials, in conjunction with the detailed microstructure 

analysis of the samples is also performed to better understand 

the low gravity effects on the enhancement of the electronic 

properties. 

The feasibility of producing high volume fraction immiscible 

alloys with finely dispersed microstructure by low-gravity 

solidification was demonstrated in 1974.[1] Ga-Bi samples 

solidified in free fall, with gravity level 10-4g (g= 980 

cm/sec), [ a ]  had much finer microstructure than the control 

samples solidified in normal gravity. It was also found that the 

electrical properties of the low-gravity solidified materials 

were significantly different from those of the control samples 

solidified under at the same conditions except at one gravity. 

The potential to synthesize in space a new class of electronic 

materials was suggested by these initial experiments. 

However, extensive studies along this line in space are 

limited due to the high cost and limited access to orbital ex- 
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perimentation facilities. In an attempt to gain more insight into 

the low-gravity processing on the material properties of immis- 

cible alloys, we decided to carry out a systematic study of 

materials solidified directionally in a Bridgman furnace on 

NASA's KC-135 aircraft. The advantages of using KC-135 are that 

it is relatively inexpensive, has a short turnaround time, and 

provides the capability when combined with unidirectional 

solidification of having in one sample a series of identifiable 

sections grown in low-g or high-g.[3-51 The material chosen in 

this study is the ternary Al-In-Sn alloy. [ 6 ]  

On the other hand, several important questions concerning 

the relation between the fine microstructure and cooling rate,[l] 

droplet size [7] and the proper choice of material in terms of 

interfacial energy have been raised.[8] Furthermore, although the 

observation of the anomalous electric properties in low gravity 

processed GaBi samples has been related to the fine microstruc- 

ture due to the fine dispersion of Ga particles in Bi matrix, a 

complete understanding of the behavior is still not available. 

In an effort to understand better some of the questions men- 

of tioned and the low gravity effects on the physicai properties 

an immiscible alloy in general, we decided to carry out experi- 

ments to solidify immiscible GaBi alloys in drop-tower using a 

new package which allows us to have better control in parameters 

such as cooling rate and sample size. 

It is known that the application of pressure one of the 

simplest and most direct approach in characterizing electronic 
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properties of solids,[9] since various interactions, responsible 

for the great diversity of solid behavior, depend on the inter- 

atomic distance. It is also known that pressure can effectively 

modify the material properties which may be related to the inter- 

facial phenomena. Therefore, we also carried out measurements on 

the physical properties of the prepared samples under pressure. 

In the following, we present results of the studies on the 

directionally solidified Al-In-Sn alloys processed in KC-135 

airplane and immiscible GaBi alloy prepared during free fall in 

Marshall Space Flight Center Drop Tower. 

I. DIRECTIONALLY SOLIDIFIED Al-In-Sn ALLOYS 

A photomicrograph of A1-18.9In-14.6Sn flight sample for 

which properties data are reported here is shown in Figure 1. 

Typical resistance R of samples solidified at different gravity 

levels are shown in Figure 2 as a function of temperature. It can 

be seen that the resistance of low-g samples is less temperature 

dependent. In Table I, we summarize the electrical properties of 

the samples measured which include the sample section prior to 

directional solidification and In-Sn alloys of two selected com- 

positions. Figure 3 is a schematic plot showing resistance as a 

function of temperature for typical semi-metal and metal with a 

superconducting transition at low temperature. Results given in 

Figure 2 in comparison to the characteristic curves in Figure 3 

clearly indicate that the low-g sample behaves more like a semi- 
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metal while the high-g sample is essentially metallic. 

All samples studied become superconducting with an onset 

temperature ranging from 7.8 K to 6.3 K. Figure 4 shows the tem- 

perature dependence of the resistance and magnetic susceptibility 

at low temperature for a high- and low-g section. The average 

transition width is 3 K, showing the inhomogeneous character of 

our material. Tc, resistance ratio, and the gravitational ac- 

celeration parallel to the growth axis during solidification as 

plotted versus sample position is shown in Figure 5. - 

In Figure 6, we have shown the detailed resistive behavior 

of the sample at low temperature. An unusual electrical anomaly 

is observed for both low-g and high-g samples in the temperature 

regime right before the complete superconducting transition. The 

resistance first decreases on cooling and then suddenly rises 

before the complete transition. The magnitude of the anomaly 

depends on the measuring currents. Such an anomaly was not ob- 

served in the ground processed In-Sn samples. 

Microstructure and chemical composition analyses of the 

samples have been performed using SEM fitted with a WDX analyzer. 

The micrographs clearly show that the samples consist of par- 

ticles of 3 - 50 um in size embedded in the aluminum matrix. It 

is found that there are two different phases in these particles, 

viewed as dark and light particles in the light field SEM. The 

apparent volume fraction of the dark phase is about one-third of 

the particles. These particles are made almost entirely of In 
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and Sn. The dark phase of the particles consists of In-Sn with 25 

wt.8 Sn and the Sn content does not change with g-level during 

solidification. On the other hand, the Sn concentration of the 

light phase of the particles does appear to vary with gravity 

level. The low-g light particle is mainly In-Sn with 25 wt.% Sn, 

while its counterpart in high-g is mainly In-Sn with 75 wt.% Sn. 

A summary of the results is also given in Table I. 

The results given in Table I and Figure 5 clearly 

demonstrated that the accelerations during solidification greatly 

efect the electrical properties of the sample. The resis- 

tivities of the samples are dominated by the scattering of 

electrons by the dispersion of second phase which is the 

precipitated In-Sn embedded in the aluminum matrix if we consider 

the connecting path of the electron is the aluminum matrix. It 

is known that the electrical properties of an alloy depend on its 

particle size and the interface between particles.[lO] Smaller 

particles will lead to an increase in the surface-to-volume ratio 

with a subsequent increase in electron scattering and interface 

effects. The relatively smaller resistance ratio and the larger 

room temperature resistivity of the low-g sample over those of 

the high-g samples suggest that samples solidified at low-g may 

consist of finely dispersed particles. Unfortunately, we do not 

see any clear difference in particle size between low-g and high- 

g samples from photomicrographs. This suggests that the conduct- 

ing path may be different for samples solidified at different 

gravity level. 
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Based on the WDX composition analysis, it can be inferred 

from the phase diagram that low-g samples contain mainly P 

phase ( 2 5  wt.%Sn) In-Sn particles, while the high-g samples con- 

sist of small portion of p phase particles randomly distributed 

in the larger r phase (75 wt.%Sn) particles. Therefore, we 

propose a model that for the high-g samples, the connectivity of 

the conducting path is through the aluminum matrix, and for the 

low-g samples, it is through the precipitated In-Sn particles. 

This model is shown schematically in Figure 7. The observation of 

the resistive behavior of the ground processed In-Sn samples, 

which is similar to that of the low-g samples but different from 

that of the high-g samples, seems to support such an assumption. 

In addition, a photomicrograph study of the deep etched sample 

indeed shows that the precipitated particles are more dense in 

the low-g sections than in the high-g sections, but attempts to 

quantitatively verify the difference in the connectivity of the 

In-Sn phase have been thus far inconclusive. 

The superconductivity observed is attributed to the presence 

of the In-Sn phase. Superconductivity of the In-Sn system has 

been extensively studied.[ll-131 It was found that T of the 

quenched samples varies from 7.8 K to 5.5 K with Sn content.[9] 

Peak T of 7 . 8  K occurs at the p phase with composition of 30 

wt.% Sn, while r phase alloys have T on the order of 6 K. Su- 

perconducting transition temperature of In-Sn alloys as a func- 

tion of Sn content along with the In-Sn binary phase diagram is 

shown in Figure 8 .  This is consistent with our observations that 

low-g samples have Tc about one degree higher than that of the 

C 

C 
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high-g samples, and our hypothesis based on WDX analysis that the 

low-g particles are essentially P phase, while high-g sections 

contain mainly r phase particles. 

The resistive anomaly observed at low temperature is rather 

unusual. The dependence of the anomaly on transport currents and 

external magnetic fields indicates that the anomaly is supercon- 

ducting in origin. It suggests that the sample undergoes a normal 

-- superconducting -- normal -- superconducting transition. It 

is known that a granular superconductor, in which the supercon- 

ducting grains are coated with an insulating layer or embedded in 

an insulating matrix,may exhibit re-entrant superconduc- 

tivity. [14-161 In view of the inhomogeneous nature of our 

sample, it is very possible that there exist small superconduct- 

ing grains coated with thin insulating film that have relatively 

larger T than that of the major In-Sn particles. A t  this mo- 

ment, whether the exact origin of this superconductivity is due 

to the In-Sn micrograins or some unidentified phases (such as in- 

terfacial effects [17] between particles) is unknown. The absence 

of the anomaly in the ground processed In-Sn samples suggests 

that the presence of aluminum may play an important role. 

In conclusion, we have studied the ternary, A1-18.91n-14.6Sn 

directionally solidified in NASA KC-135 aircraft. Electrical 

properties measurements of the samples solidified at different g- 

levels show that: (1) low-g samples behave more like a semi-metal 

while high-g samples are essentially metallic. ( 2 )  Both low-g and 

high-g samples are superconducting but T of low-g samples is 1 K 

higher than that of high-g samples. ( 3 )  A resistive anomaly at- 
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tributed to re-entrant superconductivity is observed in the 

samples studied. 

11. IMMISCIBLE GaBi ALLOY 

The normalized temperature dependence of resistances at different 

pressures for the drop-tower (DT) and ground control (GC) samples are 

shown in Figure 9. As temperature decreases, R exhibits a broad max- 

imum at lOOK fo r  DT sample, but decreases continuously fo r  GC 

sampIe. The residual resistivity of the DT sample is found to be 

70 un-cm. Compare this value with the results by Otto and Lacy,[2] 

the average particle size of our sample is estimated to be about 1.5 

um. However, at low temperature, both resistive and magnetic suscep- 

tibility measurements show that there are two superconducting transi- 

tions for DT sample. A transition with higher temperature (Tc,) oc- 

curs at 8.4K, and a lower one (T ) at 7.7K. In Figure 10 we show 

the detailed low temperature resistivity and susceptibility data at 

three pressures. It is apparent that both superconducting phases are 

non-bulk. The lower T transition has larger volume fraction which 

is 3%, while the higher T phase has only a volume fraction 0.1%. In 

the GC sample, only one transition at Tcz ( 7.7K) is observed. In 

order to find such an observation is a general result, we re-examine 

some of the samples studied previously. It indeed shows that the 

samples prepared under low gravity condition all exhibits two super- 

conducting phases. While only one detectable transition is observed 

in the samples processed at normal gravity. 

c2 
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The application of pressure is found to have different effects on 

the overall resistance of the DT and GC samples. As summarized in 

Table 11, fo r  DT sample, the resistance first increases as pressure 

increases, reaches a peak at 7 kbar, and then decreases as pressure 

further increases. The temperature dependence of R behave similarly 

under pressure, as evidenced in Figure 11. The negative temperature 

dependence of R for DT sample becomes more prominent as pressure in- 

creases until the pressure is larger than 10 kbar. This results can 

also be seen in the appearance of peak activation energy value B with 

pressure at 10 kbar. also 

varies non-monotonicaly with pressure as shown in Figure 11. 

However the peak of T is at about 5 kbar which is lower than that 

of R and dR/dT. On the other hand, T of DT sample decreases almost 

linearly with pressure. The pressure coefficient of Tc2 is found to 

be -3.2~10-~ K/bar. 

More interesting is that Tcl of DT sample 

cl 

c2 

For GC sample, the overall resistance decreases as pressure in- 

creases. An almost factor of 6 drop in resistance is observed at 2 

kbar . This may be due to a phase transition of Bi from Bi-I to Bi- 

11. However, dR/dT value becomes smaller with increasing pressure, 

as evidenced by the ratio of overall resistance to residual resis- 

tance list in Table I1 and the curves shown in Figure 12. T of GC 

sample behaves similarly to T of DT sample with almost identical 

pressure coefficient. 

c2 

c2 

It is well known that in a pure meta1,phonon scattering results 

and 

Debye 

in a linear temperature dependent term in R at high temperature, 

gives a T5 dependence of R at temperature much lower than the 
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temperature of the metal. On the other hand, in a highly disordered 

alloys, the resistance can have a strong negative temperature depen- 

dence resemble to that of a semiconductor or an insulator.[l8] Such 

a metal-insulator transition has recently been observed in the Au-Ge 

alloy with Au concentration less than 24 at.% where no crys- 

talline state exists.[l9] 

system 

In view of the fine dispersion of Ga particle in Bi matrix ob- 

served in DT samples, it is not impossible that in these samples a 

disordered or amorphous phase is formed and results in a semiconduct- 

ing phase with relatively small energy gap at the interface. With 

such a consideration in mind, the observed resistance maximum in DT 

sample can be understood as the result of the competing effect of the 

metallic contribution in the matrix and the semiconducting phase at 

the interface. At high temperature, the mean free path of the 

electron is short, the semiconducting phase will dominate and give a 

negative dR/dT. This is consistent with the reduction in the number 

of free electron as temperature decreases derived from the Hall ef- 

fect measurements on DT samples.[20] When the temperature further 

decreases, the mean free path of electron increases, and the metallic 

portion becomes dominant to give the rapid decrease in resistance. 

Since the interface effect is expected to depend on the particle 

size, an optimum condition may exist for the formation of the disor- 

dered phase at the interface. By varying particle size or applica- 

tion of pressure can tailor such an optimum condition. The observa- 

tion of the existence of peak values of the overall resistance, 

negative dR/dT, and activation energy B in DT sample can all be ex- 
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plained by the existence of such an optimum phase matching condition. 

In addition, the ever decreasing dR/dT value of GC sample with pres- 

sure is also consistent with such a suggestion. 

The detection of two superconducting transition in DT sample but 

only one lower T transition in GC sample is surprising. From the 

existing data on superconducting elements and alloys which related to 

this study, it is found that only amorphous (thin film) Ga,[21] amor- 

phous GaBi alloys [22] (Ga concentration larger than 80 percent), and 

Bi-VI (above 90 kbar pressure) can have T higher than 8 K.[23] The 

pressure effect on T of Bi-IV phase is found to be negative,[24] 

this is inconsistent with the non-monotonic variation of Tcl with 

pressure. Based on the suggestion that amorphous phase may exist at 

interface between Bi matrix and Ga particle, the observation of high 

T phase in DT sample can be due to the existence of amorphous Ga or 

amorphous GaBi alloy at the interface. However, other possibility 

such as the interfacial superconductivity [17] due to the presence of 

metal / semiconductor interface can not be ruled out at this moment. 

Since GC sample has coarse dispersion, formation of the highly disor- 

dered phase at the interface is not expected, high T phase is also 

not expected, consistent with our observation. 

The lower T superconducting phase observed in both DT and GC 
C 

sample has a pressure coefficient dTc/dP 

is similar to that found in Ga-I1 and Bi-V phase.[24] However, the 

Bi-V phase exists only at pressure larger than 68 kbar and has a T w 

6.7 K which is too small to aconite for our observation. Therefore, 

we can attribute the lower T phase to the presence of Ga-I1 phase in 

-3.2x10-’ K/bar. This value 

C 

C 
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both DT and GC samples. 

The resistivity anomaly found in GaBi samples prepared with low 

gravity solidification can be attributed to the possible existence of 

amorphous or highly disordered phase in the interface between the Ga 

fine particle and Bi matrix. Two superconducting phases are observed 

in the low-gravity processed samples, while only one at lower transi- 

tion temperature is detected in the ground control samples. The high 

T phase in DT sample can be due to the amorphous Ga phase, amorphous 

GaBi or some unknown phase due to novel superconducting mechanism. 

Detak'led analysis using scanning tunneling microscope is planned to 

pin point the exact phase responsible for our observation. The lower 

temperature superconducting phase found in both DT and GC samples is 

identified with the Ga-I1 phase from the pressure measurement. 

C 
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TABLE I. ELECTRICAL PROPERTIES OF A1-18.9In-14.6Sn 

1 

2 

3- 1 

3- 2 

4 

5 

13.5 38.3 6.5 24 19 1 

121.2 1.54 7.4 26 25 Low 

9.3 

103.2 

19.1 

123.6 

6 - 14.9 

7- 1 731.7 

7- 2 

8 

395.2 

15.5 

25.4 6.7 72 19 High 

7.9 7.1 22 19 Low 

15.2 6.5 68 21  High 

5.6 7.8 26 19 Low 

4.7 6.7 50 2 1  High 

0.78 7.3 2 1  26 Low 

1.8 7.4 2 1  26 Low 

13.9 6.5 73 26 High 

9 46.7 2.4 7.3 - - Low 
... 

A1 1.17 4.2 x l o s  1.17 

In75Sn25 (6) 56.1 2.15 7.1 

In2IjSn75 (y) 70.1 2.57 6 .4  

LPP: Light  Phase Particles 
DPP: Dark  Phase  Part ic les  
G:  Level of Acceleration 



Table IL. Parameters of GaBi (both DT and GC) samples 

GaBi 0 
(DT) 0.4 

3.0 
7.1 
10.2 
14.0 
15.0 
16.5 
17.6 

8.26 
8.32 
8.50 
8.48 
8.41 
8.27 
7.95 
7.7 
7.65 

7.67 
7.58 
7.53 
7.42 
7.31 
7.18 
7.12 
7.12 
7.10 

0.53 2.5 77.1 
0.28 2.0 37.4 
0.68 1.63 35.6 
0.88 1.98 47.5 
1.35 1.63 41.4 
0.29 1.96 32.9 
0.72 1.4 29.2 
0.43 1.3 20.2 

< 0 1.1 13.0 

177 
99.3 
104.6 
134 
122.4 
103.5 
98.8 
96.7 
86.0 

GaBi 0 
(GC) 0.3 

1.6 
5.3 
7.8 
12.0 
15.3 
17.8 

-- 7.66 
-- 7.60 
-- 7.57 
-- 7.36 
-- 7.27 
-- 7.17 
-- 7.15 
-- 7.10 

1.35 
6.30 
1.40 
0.50 
0.30 
0.14 
0.23 
0.17 

72.6 
63.2 
11.4 
6.6 
3.5 
2.6 
2.7 
2.2 
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Figure 2. Normalized resistance R(Tc)/R(300 K) as a function of temperature of 
Al- 18.9In- 14.6Sn sections solidified under different levels of acceleration. 
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Figure 3 .  Schematic plot illustrating the characteristic behavior of 

resistance as a function of temperature for semi-metal and for 
metal with superconducting transition at low temperature. 
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Figure 4 .  Electrical resistance and magnetic susceptibility at low temperature 
of Al- 18.9In- 14.6Sn solidified under different levels of acceleration. 
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Figure 7 .  Schematic plot showing the proposed model for the current 
conducting path for sample solidified in low g and in high g .  
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